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The stability analysis of a street of Stuart vortices in a rotating frame is performed
by integrating the Kelvin–Townsend equations along the mean flow trajectories,
using the geometrical optics technique (Lifschitz & Hameiri 1991) for short-wave
perturbations. A parallel is drawn between the formulations of this zonal approach
and that of rapid distortion theory, better known to the turbulence community. The
results presented confirm those obtained by the standard stability analysis based on
normal-mode decomposition: depending on the rotation parameter and the oblique
mode considered, three unstable zones are identified, related to the centrifugal, elliptic
and hyperbolic instabilities, as observed for Taylor–Green cells (Sipp et al. 1999).
Anticyclonic rotation is shown to destabilize Stuart vortices through a combination
of the elliptical and centrifugal instability mechanisms, depending on the ratio of
its rate to the structure core vorticity. Available stability criteria are discussed in the
general case of two-dimensional rotating flows, in relation to their streamline topology
and the values of the local Rossby number or vorticity.

1. Introduction
System rotation does not affect the motion of an incompressible two-dimensional

flow but it alters its stability with respect to three-dimensional disturbances. Base
flows consisting of arrays of vortices are suitable candidates for a more closely
focused study. Hence, for a rotating frame, one finds both co-rotating and counter-
rotating vortices, otherwise denoted cyclonic and anticyclonic, respectively. From
experimental and numerical studies, it is now well known that moderately strong
anticyclones are preferentially destabilized (Hopfinger & van Heijst 1993); however
we feel that explanations for this phenomenon, and precise ranges of parameters,
especially for the Rossby number, are often incomplete in the literature.

Pure parallel flow with system rotation, e.g. the rotating plane channel, is a well
known instance of anticyclonic destabilization. The related conventional stability
analyses have adressed the case of a hyperbolic tangent profile in a rotating frame.
We shall not discuss such analyses since this case is well documented (see Johnson
1963; Pedley 1969; Bradshaw 1969; Yanase et al. 1993; Leblanc & Cambon 1997),
and marginal with respect to our study, with concentrated vortices.

With the insight provided by the abundant literature existing on the problem of
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vortex destabilization, ranging from theoretical analyses to physical and numerical
experiments, we revisit the topic in this paper by studying the linear stability of
a simple non-parallel flow with system rotation, namely a street of Stuart vortices.
Indeed, the thorough knowledge of the domain of stability of Stuart vortices without
rotation is of interest since it constitutes an interesting model for the sheared mixing
layer with spanwise billows (Stuart 1967). Even though the exact streamlines are not
the same, the shapes of the Stuart and mixing layer vortices are sufficiently close to
justify an extended study of the former. In the rotating case the shear layer instability
is different, but knowing how an array of existing Stuart vortices behaves under the
effect of external rotation is still of interest, especially from the more general stability
criteria obtained in the study.

We now review briefly results of studies that started with a simpler, and more
‘academic’ context: Sipp, Lauga & Jacquin (1999) have studied a periodic array of
two-dimensional Taylor–Green vortices with either square or rectangular aspect ratio,
so that the core of the vortices may be exactly circular or squeezed in one direction.
In the latter case, three types of short-wave instability may arise, whereas the square
case prohibits the appearance of the so-called elliptic instability, for the core of the
Taylor–Green vortices remains circular.

The flow constituted by a two-dimensional array of Taylor–Green vortices is
periodic in both x1- and x2-directions, say. The basic cell is a square, and consists
of four rolls bounded by squared streamlines, and counter-rotating with respect to
one other: this corresponds to Taylor’s ‘four-roller mill’ (Lagnado & Leal 1990). In
addition, ellipticity can be introduced by considering a rectangular cell of aspect
ratio E, and the flow can be set in a rotating frame with angular velocity Ω along
the axis of the Taylor–Green vortices. When Ω 6= 0, two non-adjacent vortices are
cyclonic and the two others are anticyclonic. In non-dimensional form, we recall that
the streamfunction is given by ψ = (sin x1 sin x2)/(1 + E2) and the Rossby number is
Ro = W0/(2Ω), with W0 the absolute value of the core vorticity. This definition of Ro
(Cambon et al. 1994) will be used throughout the paper. Note that Ro is algebraic
with Ro < 0 for anticyclonic eddies. (The non-rotating case corresponds to |Ro| = ∞.)

A preliminary study of the rotating case using large-eddy simulation (Cambon et
al. 1994) at E = 1 showed the preferential destabilization of anticyclonic vortices at
Ro = −2, and stabilization both in the cyclonic case and in the case of zero absolute
vorticity at the core Ro = −1. As in that work, Leblanc & Godeferd (1999) use
numerical simulations to illustrate the link between the ribs appearing between the
Taylor–Green vortices, and the presence of hyperbolic instability. In the non-rotating
case, both linear stability analysis and direct numerical simulations were performed
by Lundgren & Mansour (1996) for an isolated vortex enclosed within free-slip walls,
by using symmetrized Fourier components for the disturbance field. Their method
is therefore not suitable to study the dissymetry (cyclonic–anticyclonic) induced by
system rotation on the whole four-roller mill, as shown by Sipp et al. (1999).

Complete three-dimensional stability analyses in the circular E = 1 and elliptic
case E = 2, were achieved by Sipp & Jacquin (1998) and Sipp et al. (1999), including
the effect of system rotation. The latter work includes a detailed study of the three
background instabilities, with a particular emphasis on the centrifugal one, which is
activated only in the presence of anticyclonic system rotation. These studies offer
a quantitative comparison of the local analysis or ‘geometrical optics’ (Lifschitz &
Hameiri 1991) for short-wave disturbances localized around mean trajectories, with
a more classical non-local analysis in terms of normal modes in the following form
for the velocity and pressure disturbances: esteik3x3f(x1, x2), for a mode of spanwise
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wavevector component k3. The main result is the precise identification by both methods
of a centrifugal mode of instability.

Returning to our application of interest here, the street of Stuart vortices, let us first
recall that Pierrehumbert & Widnall (1982) performed spectral linear stability calcula-
tions in the non-rotating case, discovering the so-called ‘translative’ modes, which are
outside the scope of the present paper, since they correspond to a long-wavelength in-
teraction between adjacent vortices. In the short-wavelength approximation, Leblanc
& Cambon (1998) have used two different approaches for studying the stability of
Stuart vortices in a rotating frame. First, the geometrical optics stability theory was
applied to obtain analytical stability criteria in relation to stagnation points, thus
overlooking what may happen in the surrounding areas, e.g. possible centrifugal in-
stabilities. In their normal-mode computations, the ellipticity was probably too strong,
and perhaps the number of numerical modes employed too low, for them to be able
to bring to light this type of instability.

Potylitsin & Peltier (1999) have studied the same problem of Stuart vortices in a
rotating frame, but using only a normal-mode analysis for studying their stability.
With this global approach, they seem to have been able to identify the centrifugal
instability, though it may be a localized phenomenon. The usefulness of the local
method we use here, versus more classical global normal-mode analyses, lies in the
fact that it can ‘isolate’ a given instability mechanism, which is more difficult with
numerical eigenvalue calculations.

Recently, Sipp & Jacquin (2000) have applied their generalized criterion for cen-
trifugal instability to the Stuart vortices. Le Dizès (2000) gave an analytical formula
for the elliptical instability in a rotating frame, valid at weak ellipticity and large
wavenumber, and proposed an interesting correction when the spanwise wavelength
k3 of the instability is moderate. His method yields a matching between different
results from Leblanc & Cambon (1998) and Potylitsin & Peltier (1999) at different k3

values (2, 10, ∞), which we shall discuss later.
We present in the following section a reminder of the physical principles and

canonical flows for the three instability types. The role of those specific modes that
do not act by means of pressure is discussed in § 2.4. The methodology for zonal
analysis is presented in § 3, in which we detail the simplified linearized model (§ 3.1),
and the short-wave analysis using WKB theory (§ 3.2). Equations and numerical
resolution for the model are presented in §§ 3.3 and 3.4. Then, results are thoroughly
described in § 4 for carefully chosen sets of parameters relevant to the rotating
Stuart vortices flow. A synthesis of the results for rotating two-dimensional vortices
instabilities is proposed in § 5, and concluding remarks given in § 6.

2. Description of the three background instabilities
The observed phenomenon of ‘asymmetrization’ by solid body rotation of a flow

containing both cyclonic and anticyclonic vortices is a priori the result of a superpo-
sition of the three instability mechanisms described below, at least as far as can be
identified by linear theory.†

First, we consider an infinite circular vortex which is fully described by its radial
distribution of vorticity W (r), or the circulation Γ (r). Previous classical works have

† By asymmetrization, we mean here that the three-dimensional instability mechanisms of cy-
clones and anticyclones by the background rotation are different. This is not to be confused with
the process of non-axisymmetrization of a two-dimensional circular vortex.
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brought to light two possible inertial instability mechanisms (Drazin & Reid 1981;
Kloosterziel & van Heijst 1991). The first is ruled by Rayleigh’s circulation criterion;
it is a centrifugal inertial instability that may appear at a maximal point for the
circulation. The second one is a barotropic instability related to an extremum in
the vorticity profile, which, in terms of the radial velocity profile, translates into
an inflectional point. However, the latter mechanism only amplifies two-dimensional
perturbations, that are known to remain unaffected by system rotation; it is therefore
disqualified from explaining the asymmetry of cyclones and anticyclones containing
rotating flows.

The simplest canonical flow for discussing the centrifugal instability is a pure
circular flow entirely specified through a radial distribution of the velocity V (r), or of
the vorticity W (r), or of the circulation distribution Γ (r).

For elliptic and hyperbolic instabilities, the corresponding canonical flow is called
extensional (see § 3), i.e. a plane flow which is unbounded and possesses space-uniform
mean velocity gradients with symmetric and skew-symmetric components respectively
characterized by S and Ω0 (see equation (3.5)), the latter amounting to half the
vorticity W0.

Considering an array of Taylor–Green vortices or a street of Stuart vortices, two
main topological features need to be accounted for in the stability properties of these
flows: the possible ellipticity of the stagnation point located on the axis of the vortices,
and the hyperbolic one in between them. Both are associated with given modes of
instability, as follows. In the coming sections, the three instabilities are presented,
from the simplest centrifugal instability to the more complex elliptic and hyperbolic
ones.

2.1. Centrifugal instability in the rotating frame

Starting from the classic criterion for a circular vortex of azimuthal velocity U(r) and
vorticity W (r), expressed in a Galilean frame of reference, Kloosterziel & vanHeijst
(1991) have drawn an extended one that is valid in a frame rotating at rate Ω. We
define the absolute circulation as

Γa(r) = 2πr2

(
Ω +

U(r)

r

)
, (2.1)

and the generalized discriminant as

Φ(r) =
1

4π2r3

dΓ 2
a

dr
= 2

(
Ω +

U(r)

r

)
(W + 2Ω), (2.2)

meaning that the instability is located around circular trajectories where Φ becomes
negative after changing sign.

When U(r) characterizes a standard distribution, whose circulation Γ (r) = 2πrU(r)
varies monotonically from 0 at the centre – such that Γ (r) ∼ 2πr2Ω0 in its neighbour-
hood – to a finite value Γ∞ as r →∞, clearly no instability can occur in the fixed frame
case. This situation is unchanged in a rotating frame with cyclonic system rotation,
since a monotonic system circulation is added to the monotonic relative circulation. In
contrast, when the basic rotation is anticyclonic with Ω < Ω0, the absolute circulation
becomes positive near the centre and negative far away, assuming Ω0 > 0 without loss
of generality. This combination of parameters can therefore lead to the triggering of a
centrifugal instability. One then gets the quite simple picture that vortices with simple
radial distribution of relative circulation are destabilized by a centrifugal instability
through anticyclonic basic rotation, provided that the local Rossby number at the
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core be Ro < −1. In this inequality, we have chosen to use the Rossby number based
on the core vorticity of the eddies, yielding Ro = W0/(2Ω), which also amounts to
comparing the rotation rate of the vortices to the external rotation: Ro = Ω0/Ω.

2.2. Elliptic instability in the rotating frame

The elliptic instability has its origin in the presence of elliptic stagnation points,
i.e. somewhat differently from the previous centrifugal instability phenomenon that
requires extending the analysis to a wider domain in the vortex.

Elliptic instability is often characterized as a cooperative instability which results
from the weak additional strain induced by two adjacent vortices, according to
works since 1975 (see Moore & Saffman 1975, Tsai & Widnall 1976, Pierrehumbert
& Widnall 1982 and Leweke & Williamson 1998 for a historical survey and recent
works). More generally, one may simply assume a single vortex with elliptic streamlines
(Pierrehumbert 1986). Considering a base flow with uniform mean velocity gradients
Ui,j , the simplest method for studying its stability is to solve the Kelvin–Townsend
equations for three-dimensional disturbances in terms of Lagrangian Fourier modes,
as done in rapid distortion theory (RDT), with recent application to classic stability
analysis (see Cambon & Scott 1999 for a review). The constant velocity gradient
matrix Ui,j in the two-dimensional case is here decomposed into a strain rate S and
an angular velocity Ω0 of half the vorticity, chosen positive without loss of generality:
S < Ω0 in the elliptic case; S > Ω0 in the hyperbolic case. At weak ellipticity
S � Ω0, the disturbances can be described as unbounded plane inertial waves with
the dispersion relation ω = ±2Ω0 cos θ. The angle θ is measured between the wave
vector and the axis perpendicular to the plane of the mean flow. Resonance is found
for ω = Ω0, resulting in the selective amplification of oblique modes at cos θ = ±1/2
by a Floquet mechanism (Bayly 1986; Waleffe 1990). In the rotating frame, the angle
of the most unstable oblique modes and the Floquet coefficient that expresses their
exponential amplification are obtained from

cos θ = ±1

2

Ro

(1 + Ro)
(2.3)

and

σ

S
=

1

16

(
3Ro + 2

Ro + 1

)2

. (2.4)

The first equation is obtained by replacing the vorticity 2Ω0 by the absolute vorticity
2Ω + 2Ω0 in the resonance condition (Craik 1989), whereas the second is a recent
generalization by Le Dizès of the 9/16 value found by Waleffe in the non-rotating
case (or Ro = ±∞) (Le Dizès 2000).† At significant ellipticity, the role of basic
rotation, which shifts the range of oblique modes and modifies the amplification rate,
is not significantly different from the one for E ∼ 1, as illustrated by Cambon et al.
(1994). Unfortunately, analytical quantitative relations such as (2.3) and (2.4) cannot
be obtained easily except for the close-to-circular E ∼ 1 case.

From equation (2.3) one finds that no θ angle can be computed in the range
−2 < Ro < −2/3, corresponding to a band in which no elliptic instability may
appear. Equation (2.4) then provides the evolution of the amplification with the
rotation parameter (see the diagram of figure 1): strong anticyclones are destabilized

† As explained in detail by Le Dizès (2000), these formulae provide parameters – angle and
amplification – of the most unstable modes at fixed Ro, though there exists an interval of unstable
angle. Conversely, given fixed θ, there is an interval of unstable Rossby number around the peak.
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Figure 1. Schematic of the stability diagram obtained from equations (2.3) and (2.4). The curves
show the evolution of σ/S with respect to the value of the Rossby number. The shaded region
indicates the zone over which no elliptic unstable mode is found.

up to Ro = −2 where the growth of the perturbation is maximal. With increasing
Rossby number, destabilization reappears at values larger than −2/3, and cyclonic
vortices are destabilized again with infinitely increasing growth when Ro→∞.

Upon examination of the stability diagram plotted on figure 1, one sees that
equation (2.4) has a trifling unexpected behaviour of σ/S for vanishing Rossby
number (rapid rotation): the curve is expected to go to zero at Ro = 0; however the
ratio σ/S vanishes only at Ro = −1. Indeed, we see from (2.3) that when Ro = 0,
the initial orientation of the wave vectors corresponding to parametric instability is
θ = ± π/2 corresponding to two-dimensional perturbations, which are not affected by
the background rotation, and are stable (see for instance Leblanc & Cambon 1998).
Furthermore, the bandwidth of instability becomes infinitely narrow when |Ro| → 0
(see Bayly, Holm & Lifschitz 1996; Le Dizès 2000). This apparent paradox may be
avoided by using the rotation rate as the characteristic time scale in the evolution
equation for the kinetic energy of the perturbation (see details in Lebovitz & Lifschitz
1996), so that it may be rigorously shown that the case of infinite rotation (Ro = 0)
is stable.

2.3. Hyperbolic instability in the rotating frame

The hyperbolic stretching mechanism was illustrated by the seminal work of Batchelor
& Proudman (1954) in homogeneous RDT, in studying vorticity disturbances to a base
flow with constant velocity gradient Ui,j . In the particular two-dimensional irrotational
case, where Ω0 = 0, vorticity disturbances are governed by a Cauchy equation,
which exhibits exponential amplification of vorticity along the axis of stretching.
Similar exponential growth also appears when looking at the Fourier modes of the
velocity disturbance, especially for pure spanwise modes. This result is not significantly
changed in the general hyperbolic case S > Ω0 6= 0, a two-dimensional rotational
flow (Cambon 1982, Lagnado, Phan-Thien & Leal 1984). When adding background
rotation at rate Ω, this exponential amplification can be cancelled for a sufficiently
high value of Ω, as discussed in the following. However, insofar as asymmetry is
created in flows with cyclonic and anticyclonic vortices, hyperbolic stretching does
not appear to be a good explanatory phenomenon. Regarding the impact of such
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exponential amplification on more complicated base flows, nonlinear studies suggest
that hyperbolic stretching only concentrates the energy of the disturbance though
without affecting the energy of the background. This discussion, whether hyperbolic
stretching is associated with a genuine instability in actual flows, is outside the
scope of the present paper, but leads to considering with caution results of linear
stability when hyperbolic zones are involved (Kerr & Dold 1994; Waleffe, private
communication).

2.4. The role of pure transverse, pressureless modes

The role of pressureless modes of instability was emphasized by Bayly (1988) for
centrifugal instability and by Leblanc & Cambon (1997) in connection with general-
ized criteria. These works helped to clear up how the same criterion can be derived
from a rigorous stability analysis (Pedley 1969) and from a semi-empirical, apparently
two-dimensional and pressureless analysis (Bradshaw 1969; Bidokhti & Tritton 1992).
Spanwise modes may be written as

ui(x1, x2, x3, t) = ũi(x1, x2, t)e
ik3x3 (2.5)

where the length scale 1/k3 is much larger than the two other ones in the (x1,x2)-
plane of the mean flow. Such modes satisfy the incompressibility constraint without
being affected by the pressure disturbance. In the strict two-dimensional limit, i.e.
k3 = 0, things are radically different: while spanwise modes have space variability
concentrated in the spanwise direction, two-dimensional modes have variability con-
centrated in the two other directions. Simplified pressureless dynamics is physically
incorrect for the complete velocity field ui, e.g. the use of a ‘displaced particle’ analysis
(Tritton 1988). But replacing ui by ũi is allowed and permits correct dynamics to be
retrieved, leading to identical simplified equations and thus to the same criterion. For
two-dimensional extensional flows in a rotating frame, the dynamics of transverse,
pressureless modes yields the following generalization of the Bradshaw–Richardson
discriminant for parallel flows, Φ = 2Ω(2Ω − dU1/dx2):

Φ = −S2 + (Ω0 + 2Ω)2 (2.6)

with exp(
√−Φt) amplification; it suggests maximum destabilization for a typical

Rossby number Ro = −2. Notice here the tilting vorticity Ω0 + 2Ω discussed in
Cambon et al. (1994), which differs from the absolute vorticity 2Ω0 + 2Ω.

3. Methodology for zonal stability analysis
3.1. The linearized model equations

Let us recall the basic equations for an incompressible inviscid flow, assuming the
usual mean/fluctuating decomposition for the velocity and the pressure. The Euler
equation for the mean velocity U and pressure P is

∂Ui

∂t
+Uj

∂Ui

∂xj
= −∂P

∂xi
. (3.1)

For the fluctuating velocity field u and pressure p, the linearized equation becomes

∂ui

∂t
+Uj

∂ui

∂xj
+ uj

∂Ui

∂xj
= − ∂p

∂xi
(3.2)

and ∇ · u = 0.
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(a) (b) (c)

Figure 2. Schematics of the streamlines in flows dominated by (a) vorticity (elliptical streamlines,
here with Ω0/S = 2), (b) strain (hyperbolic, Ω0/S = 0) and (c) shear (parallel streamlines, Ω0/S = 1).

As a common background, homogeneous† RDT (see Townsend 1976) and recent
linear stability analyses (for instance Lagnado et al. 1984; Craik & Criminale 1986)
deal with the time-development of a disturbance field (ui, p) evolving in the presence
of an oversimplified base flow (Ui, P ), with

Ui = λij(t)xj. (3.3)

This flow with space-uniform velocity gradient will be referred to as an extensional
flow. For a base flow of this form to be a particular solution of Euler equations (3.1)
requires (Craya 1958) that the matrix of ij-components

dλij
dt

+ λikλkj (3.4)

be symmetric and that λii = 0. Rotational mean flows yield more complicated linear
solutions for disturbances than irrotational ones, and only the steady case has received
much attention (see Bayly et al. 1996, and Leblanc 2000 for recent developments in
unsteady cases). The above conditions (3.3)–(3.4) imply that λij is written as

λ =

 0 S − Ω0 0
S + Ω0 0 0

0 0 0

 (3.5)

in the steady, rotational case, when axes are chosen appropriately, where S, Ω0 > 0.
This corresponds to steady plane flows, combining vorticity 2Ω0 and irrotational
straining S . The related streamfunction is

ψ = −S
2

(x2
1 − x2

2) +
Ω0

2
(x2

1 + x2
2). (3.6)

Depending on the relative values of S and Ω0, streamlines in the base flow may be
of elliptical or hyperbolic shape, and in the case of vorticity entirely compensated by
strain, be straight lines in a parallel flow, as schematically pictured on figure 2.

The disturbance fields (ui, p) satisfy the modified Euler equation (3.2) with the
advection–distortion parts written in terms of λij . Its linear solution is most easily
obtained via Fourier analysis. An elementary Fourier component of the form (i2 = −1)

ui = ai(t) exp[ik(t) · x] (3.7)

yields a solution of the problem if k and ai satisfy a linear system of simple ordinary
differential equations, referred to as Townsend equations. The pressure fluctuation,
which is a solution of a Poisson equation, is given by an algebraic relationship in
terms of ai. Decomposing turbulence into Fourier components, usually referred to as

† In the non-homogeneous case, a Reynolds stress tensor term would appear in equation (3.1).
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spectral analysis, allows a straightforward treatment of the non-local dependence of
pressure upon velocity, which leads to the appearance of spatial integrals if spectral
analysis is not used. In this way, the problem of non-locality is rendered relatively
innocuous.

Time dependence of the wavenumber represents the convection of the plane wave
exp[ik(t) · x] by the base flow. Both the direction and magnitude of k change as
wavecrests rotate and approach, or separate from, each other due to mean velocity
gradients. If k is given at some time t, it can be related to its value at any other time
t0, K ≡ k(t0), by

Ki = Fji(t, t0)kj , (3.8)

where the matrix F characterizes the deformation of an imaginary material convected
at the mean velocity (3.3), between times t0 and t. In the language of continuum
mechanics, this is the Cauchy tensor associated with deformation by the base flow.
Likewise, the solution of the Townsend equations with the above time evolution for
k in (3.8) has the form

ai[k(t), t] = Gij(k, t, t0)aj[k(t0), t0], (3.9)

where Gij is a spectral Green’s function, which is a real deterministic quantity.
At this stage, it may be noticed that homogeneous RDT includes enough features

to solve the following two problems:
A deterministic problem, which consists in solving the initial value linear system of

equations for ai, in the more general way. This is done by determining the spectral
Green function, which is also the key quantity requested in linear stability analysis.

A statistical problem which is useful for the prognostic of statistical moments of
ui and p. Interpreting the initial amplitude aj(K , t0) as a random variable with a
given dense K -spectrum, equation (3.9) yields the prediction of statistical moments
by products of the basic Green’s function.

Possible applications to statistics are outside the scope of this paper. Note that
solutions (3.9) are valid even if the nonlinear term is not discarded a priori, provided
that the perturbation consists of a single mode, since a single Fourier mode cannot
interact with itself (Craik & Criminale 1986). Exactly the same deterministic problem
as the one of homogeneous RDT was addressed in the context of flow stability,
although the two communities seem to be largely unaware of each other’s work. For
instance, the stability analysis in terms of time-dependent, distorted, Fourier modes is
attributed to Kelvin (1887) by the stability literature. Owing to the generality of the
RDT formulation, which is not restricted to the special case of parallel pure shear
flows (as in Kelvin’s work), we propose to refer to (3.7)–(3.8) as ‘Lagrangian Fourier
modes’, governed by ‘Townsend’s equations’ (Cambon 2000).

Upon examination of definitions (3.5) and (3.6), three types of flow problems can
be isolated. First, the special case S = 0 yields pure rotation, which is perhaps
better treated in the rotating frame of reference and leads to inertial waves and
hence oscillating solutions. Second, the general RDT problem with arbitrary S and
Ω0 was analysed by Cambon (1982). Finally, the limiting case S = Ω0 (Townsend
1976) corresponds to simple shearing, as shown by (3.6). It is the border between two
distinct regimes: one with S < Ω0, for which the mean flow streamlines are closed
and elliptic about the stagnation point at the origin; and the case of S > Ω0, with
open and hyperbolic streamlines (see figure 2).

For S < Ω0, an illustration of the closeness between RDT and stability analyses
is shown on figure 3, to be compared with the location θpeak of elliptic instabilities
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Figure 3. For a flow with elliptical streamlines, maximum eigenvalue s2 of the symmetrized matrix
of the Green’s function GGT as a function of the direction θ of the wavevector measured from the
polar axis. (Taken at a period t = T , s2 differs only from the actual Floquet parameter because of
the use of a symmetrized matrix.) Curves labelled 1, 2, 3, 4 are obtained at cumulated deformation

of St = 2.89, 4.22, 5.55, 6.66 respectively, or in terms of the period T = 2π/
√
Ω2

0 − S2: t/T = 1.3,
2, 2.5, 3. The ratio of angular velocity to deformation Ω0/S is 3 (from Cambon 1982). The location
of the peak corresponds to the predicted θ = π/3, as mentioned in § 1.

shown later on in the text. Figure 3 was obtained by Cambon (1982) and shows that
Townsend’s equations in the case of exactly elliptical streamlines can generate angular
peaks of instability.

3.2. Principles of the zonal approach through scale separation

Even if the Green’s function related to the canonical base flow can give interesting
information for linear stability analysis and short-time development of turbulence, this
problem is somewhat unphysical in the absence of typical length scales for variation
of the base flow gradients and disturbances length scales. For instance, the Green’s
function in (3.9) only depends on the orientation, not on the modulus k of the wave
vector, and this type of instability, recovered in the weakly elliptical case S � Ω0, was
called ‘broadband’ by Pierrehumbert (1986). The Widnall instability (Tsai & Widnall
1976), which is an actual occurrence of the generic elliptical instability, appears at
short wavenumbers. Rather than considering perturbations with arbitrary wavelength
k−1 in the presence of the extensional flow, it is more physical to consider a base flow
whose velocity gradients vary over a typical length scale L, and to restrict the validity
of the zonal stability analysis to perturbations of much shorter wavelength k−1 � L.
In so doing, the disturbance field should locally experience advection and distortion
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effects by the base flow, similarly to the effects of an extensional flow. Given a priori a
length scale separation between base and disturbance flows, one can imagine looking
through a mathematical magnifying glass at the vicinity of real base trajectories. This
idea was formalized by Lifschitz & Hameiri (1991) using an asymptotic approach
based on the classical WKB method, which is traditionally used to analyse the ray
theoretic limit in wave problems, i.e. at short waves (see e.g. Lighthill 1978). The
perturbation field solution is formally written as

ui(x, t) = ai(x, t) exp[iφ(x, t)/ε] (3.10)

with a similar expression for the fluctuating pressure; φ is a real phase function and ε is
a small parameter expressing the smallness of scale of the waves represented by (3.10).
Their complex amplitude ai(x, t) is expanded in powers of ε according to the WKB
technique. Over distances of O(ε), one can use a spatial Taylor series representation
for φ – here restricted to the linear term – and approximate ai as constant. It is then
apparent that (3.10) is locally a plane-wave Fourier component of wavenumber

ki(x, t) = ε−1 ∂φ

∂xi
. (3.11)

The amplitude ai(x, t) in (3.10) and the corresponding equation for the fluctuating
pressure are expanded as a series in powers of ε, and the result inserted into the
linearized equations without viscosity. At leading order, one finds that

φ̇ =
∂φ

∂t
+Uj

∂φ

∂xj
= 0, (3.12)

i.e. the wave crests of (3.10) are convected by the mean flow. The spatial derivative
of (3.12) yields

k̇i = −λji(t)kj (3.13)

where, as before, λij = ∂Ui/∂xj and the dot represents the mean-flow material
derivative ∂/∂t+Ui∂/∂xi. To next order, one obtains

ȧ
(0)
i = −(δin − 2kikn/k

2)λnj(t)a
(0)
j (3.14)

after elimination of the pressure using the leading-order incompressibility condition
kia

(0)
i = 0, where a(0)

i is the leading-order term in the expansion of ai.
Equations (3.13) and (3.14) have exactly the same form as Townsend equations for

k and a in (3.7), which therefore describe the weakly inhomogeneous case at leading
order. The only difference lies in that, rather than being plain time derivatives, the
dots represent base-flow material derivatives. It implies that, in the zonal approach,
one should follow convection by the mean flow. In homogeneous RDT, the different
classes of disturbances are only labelled by the direction of the initial wave vector
K , and all trajectories such as ψ = constant in (3.6) are equivalent. In the zonal
approach, it is necessary to add the Lagrangian coordinates vector X for labelling
different trajectories. In agreement with classic continuum mechanics, one has

dxi = FijdXj +Uidt, (3.15)

when differentiating the trajectory equation, so that (3.12) and (3.13) correspond to

kiδxi = KiδXi, ki(X , t) = F−1
ji (X , t, t0)Kj, (3.16)

which is a generalization of (3.8). Equation (3.8) itself actually corresponds to k · x =
K ·X . Even if WKB methods are common in stability analysis, their application to fully
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three-dimensional disturbances, with both time- and space-dependent wavevectors, is
not common, and the canonical homogeneous RDT provides a useful framework to
understand the background of geometrical optics.

3.3. Numerical solution of the zonal approach model

The trajectories of the Stuart base flow in the (x1, x2)-plane are given by the following
streamfunction:

ψ = log(cosh(x2)− ρ cos(x1)) (3.17)

where ρ in the range ]0, 1] characterizes the vorticity distribution.
The Kelvin–Townsend equations in the rotating frame are

ẋi = Ui

k̇i = −Uj,ikj

ȧi = −
[(
δin − 2

kikn

k2

)
Un,j + 2

(
δin − kikn

k2

)
εnmjΩm

]
aj,

 (3.18)

respectively the trajectory equation, the eikonal equation, and the amplitude equation.
The overdot denotes a Lagrangian (or substantial) derivative following trajectories.
In the above system of ODEs, the velocity components Ui and the velocity gradient
matrix Ui,j are analytically expressed at any point using equation (3.17). This system
is solved with given initial data, which we denote by capital letters: the Lagrangian
coordinate X is the initial position on the trajectory, K is the related wavevector, and
A the related amplitude.

Provided k(t) be periodic (see the subsequent discussion in § 3.4), the general
solution for the linear initial-value problem may be expressed after a period T as

ai(X ,K , T ) = Gij(X ,K , 0, T )Aj. (3.19)

The Floquet parameter σ(X ,K ) is related to the maximum eigenvalue of the Floquet
matrix G through

σ(X ,K ) = log(||max eigenvalue of G(X ,K , 0, T )||)/T .
Both parameter and matrix are therefore identified independently for each trajectory
and each initial wavevector. In order to obtain quantitative results, the system of
equations is integrated using a fourth-order Runge–Kutta scheme.

3.4. Parameters and presented quantities

The base flow is characterized by the value of ρ in equation (3.17). Therefore, the
Rossby number is defined as the ratio Ro = W0/(2Ω) of the core vorticity to system
vorticity, based on

W0 = −(1 + ρ)/(1− ρ). (3.20)

Each closed streamline is labelled by the abscissa x0 such that X = (x0, 0, 0) and
0 < x0 < π. An open trajectory can be labelled by the ordinate y0, again with X =
(π, y0, 0) and y0 > 0. As found by Sipp & Jacquin 1998, choosing the initial wavevector
in a plane normal to the initial velocity vector is enough for a complete analysis.
Accordingly, K = (sin θ, 0, cos θ) for a closed trajectory and K = (0, sin θ, cos θ) for
an open one. This choice corresponds in both cases to K · U = 0 at the initial
time, so that k · U = 0 at subsequent times (see Sipp & Jacquin 1998). In that
case, the solution of the eikonal equation is bounded and periodic in time. On the
other hand, if K · U 6= 0 initially, then it may be shown analytically that outside
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Figure 4. Growth rate of the most unstable mode for a Stuart vortex street with rotation as a
function of the rotation rate Ω. Dashed curves: asymptotic results for the hyperbolic (left-hand
peak) and elliptic (right-hand peak) stagnation points; dotted curves: results from a full linear
stability calculation. Parameter for the Stuart vortices: ρ = 1/3 (from Leblanc & Cambon 1998).

the hyperbolic stagnation points, the corresponding solution |k(t)| can eventually
grow algebraically (see Appendix B). This case is not of interest here, because
the periodicity of K is required for equation (3.19) to be an actual Floquet-type
problem. As a consequence, the unique parameter for the definition of K is its angle
θ ∈ [0, π/2]; the orientation θ = 0 characterizes pure spanwise or pressureless modes,
whereas θ = π/2 characterizes two-dimensional modes.

In addition to the Floquet coefficient, σ(x0, θ) for closed trajectories, σ(y0, θ) for
open trajectories, important quantities are

the local spanwise vorticity W (x0), or W (y0), conserved along trajectories,
the relative circulation Γ (x0) of U for closed trajectories in the rotating frame,
the absolute circulation Γa(x0),
the local strain rate S = ( 1

2
[ 1

2
(Ui,j +Uj,i)

1
2
(Ui,j +Uj,i)])

1/2.
For numerical convenience, the relative and absolute circulation are computed in

the same way as system (3.18), by adding to it the equations

Γ̇ = −U2, (3.21)

Γ̇ a = −U2 + Ω(x1U2 − x2U1) (3.22)

to be solved along closed trajectories. (The negative sign in front of U2 comes from
the clockwise rotation of the Stuart vortices, opposite to the positive orientation of
the (x, y)-plane.) The strain rate varies along trajectories and thus only its order
of magnitude is informative. Recall, however, that S(x0) has a fixed value S = 1/2
at the stagnation points, both elliptic and hyperbolic, independent of the vorticity
concentration parameter ρ.

Figure 4 shows the results obtained by Leblanc & Cambon (1997) (their figure 7d),
for the instability growth rates σ versus the external reference frame rotation Ω. It
collects results for pure spanwise wavevectors, and the two folds in the curve corre-
spond to the growth rates of the elliptic and the hyperbolic instability modes. As seen
on this same figure, Leblanc & Cambon (1997) also obtain good agreement of these
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Figure 5. Streamlines in the Stuart vortices with parameter ρ = 1/3, 3/4, 19/21 and 1
respectively (a)–(d ). (The x and y plotting range is [−π, π].)
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Figure 6. (a) Opposite of the relative circulation −Γ : for decreasing ρ = 1, 19/21, 3/4, 1/3.
(b) Local spanwise vorticity W for the closed trajectories for decreasing ρ = 19/21, 3/4, 1/3. (In
the case ρ = 1, the vorticity is infinite at the center, and vanishes everywhere else.)

predictions with results from the normal-mode analysis, using modes expressed as

ui(x, t) = esteik3x3 ũi(x1, x2). (3.23)

4. Results
We focus on four different ‘geometries’ for the Stuart vortices, i.e. using four values

for the shape parameter ρ. The streamlines of the Stuart vortices for each of the
corresponding four values of ρ are presented on figure 5. The most elliptical, i.e.
flattened vortices, is computed with ρ = 1/3. For ρ = 1, we obtain the ‘cylindrical’
case, meaning circular core streamlines, while the vorticity concentrates at the unique
point x = 0. But in this case of course the hyperbolic stagnation point is still present.
Two intermediate cases are also taken to be ρ = 3/4 and ρ = 19/21. Note that these
particular values are chosen in order that the corresponding core vorticity W0 be an
integer.

The numerically computed relative circulation Γ , independent of the rotation rate
of course, is plotted on figure 6(a). On this figure, we observe that the analytical
−4π value is recovered in the ρ = 1 singular case, for which the vorticity of the
Stuart vortex is a centred Dirac function. For the other three cases, the vorticity
is plotted on figure 6(b), again with respect to the x0-coordinate. When external
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Figure 7. Distribution of the Floquet amplification parameter σ for the elliptic instability at the
centre of the Stuart vortices, as a function of the angle of maximum destabilization θ given in
equation (4.1), plotted with a solid line. Each symbol corresponds to a numerical result obtained
with the zonal analysis, for the given value of ρ.

rotation is applied to the system, the absolute circulation is obtained from the relative
circulation by adding a parabola to the monotonically increasing curves shown on
figure 6(a). It is clear that in the anticyclonic case, this contribution (2πΩr2 in the
circular case) is monotonically decreasing, and therefore the two contributions add
up to an absolute circulation exhibiting a local extremum. The latter is plotted in the
following three-dimensional representation of the Floquet amplification coefficient, in
order to emphasize its strong correlation with the region of emergence of a centrifugal
instability.

4.1. Core region

Looking only at the centre x0 = 0 of the Stuart vortices where S = 1/2, equations
(2.3) and (2.4) become

σ(x0 = 0) =

(
1 + cos θ

2

)2

S. (4.1)

Figure 7 shows this analytical result obtained from a weak ellipticity approximation
with numerical results from the zonal analysis close to the elliptic stagnation point
x0 = 0. We observe that the agreement is quite good, especially for values of ρ close
to 1. However, even for the smaller value ρ = 1/3, the departure of the amplification
rate from the weakly elliptic prediction is not very great.

Concerning transverse modes θ = 0, the application of the criterion described by
equation (2.6) to the point at the centre of the vortices allows one to express the



16 F. S. Godeferd, C. Cambon and S. Leblanc

0.6

0.5

0.4

0.3

0.2

0.1

0
–1.0 –0.8 –0.6

X

r (x0 = 0)

–0.4 –0.2 0

Figure 8. Distribution of the Floquet amplification parameter σ for the elliptic instability at the
centre of the Stuart vortices, and for spanwise modes at θ = 0, as a function of the rotation rate
Ω, according to equation (4.2): , ρ = 1/3; , ρ = 1/2; and , ρ = 3/4.
The symbols indicate the corresponding numerical results obtained from the local stability analysis
(squares for ρ = 1/3, open circles for ρ = 1/2 and black circles for ρ = 3/4).

amplification rate as:

σ(x0 = 0) =

√
1

4
−
(

1 + ρ

1− ρ
)2(

1

2
+

1

Ro

)2

, (4.2)

with 1/Ro = Ω(1− ρ)/(1 + ρ).
The elliptical instability band can then be plotted in terms of Ω-dependence, as

done on figure 8 for three values of ρ, along with the predictions from our analysis.
The agreement is quite good in the three cases. Note that the amplification factor
may be reduced and its maximum shifted for eigenmodes with moderate transverse
wavenumbers, as shown by Le Dizès (2000).

4.2. Case ρ = 1/3

This case with strong ellipticity was thoroughly analysed by Leblanc & Cambon
(1998). The values of vorticity and ellipticity at the core are W0 = −2 and E =
1/
√
ρ = 1.732, respectively. Let us begin with the non-rotating case at Ro = ∞. A

three-dimensional plot of the Floquet parameter is presented as a function of the
x0-coordinate and the angle θ of the wavevector on figure 9(a). It also shows contours
of isolevels for this surface, and the variation of the circulation with respect to x0.
(With regard to this Γa curve, the scale is arbitrarily chosen, independently of that
shown on the vertical σ-axis, as in all the following similar representations.) At x0 = 0,
i.e. in the core of the vortex, the trace of the elliptic instability is observed, as plotted
on figure 9(b), exactly as in the previously mentioned works by Bayly (1986), Waleffe
(1990) and Leblanc & Cambon (1997). The instability peak is located around 0.95 as
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Figure 9. ρ = 1/3, Ro = ∞. (a) Floquet amplification parameter σ as a function of the trajectory,
indexed by its intersection x0 with the x-axis, and the orientation θ of the wavevector to the z-axis.
(b) Slices of the previous three-dimensional plot at x0 = 0 (solid line) and x0 = π (dotted line).

pointed out by Sipp et al. (1999), in close agreement with the location at θ = π/3
predicted by Cambon (1982) and Bayly (1986).

Returning to the second curve of figure 9(b), considering the edge of the Stuart
vortex, the most unstable zones are shifted towards smaller θ, and the most unstable
wavevector ultimately becomes a pure spanwise mode with θ = 0, at the hyperbolic
stagnation point. In the latter case, the growth rate (σ ' 0.32) is slightly larger than
for the elliptic mode (σ ' 0.27). Notice also that the evolution of the unstable modes
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Figure 10. Same as figure 9(a) but with ρ = 1/3 and Ro = −2. The absolute circulation, which is
a function uniquely of x0, is traced in the θ = 0 plane, with an arbitrary scale. The contours of a
plane through the maximum of Γa are also shown, for a convenient observation of the correlation
with the position of the band of centrifugal instability.

from the elliptic region to the hyperbolic one happens continuously in this strongly
elliptic case.

The rotating case Ro = −2, shown on figure 10, is the limit case for maximal
destabilization of anticyclones. Three different effects of rotation can be isolated in
these results. First, the triggering of a centrifugal instability zone, which did not
appear in the previous non-rotating case. As shown on the plot, a broad band of
instability appears at intermediate x0-values in the Floquet parameter surface. Its
location is exactly correlated with the x0-coordinate at which the absolute circulation,
computed by (3.22) for the closed non-circular streamlines, is minimal, in agreement
with the modified Rayleigh criterion of equation (2.2). The unstable domain extends
over almost all the θ orientations, but with decreasing amplitude when moving from
pure spanwise modes to two-dimensional modes.

Second, the elliptic instability domain is shifted, due to the effect of rotation,
towards smaller θ, and finally, values of the Floquet amplification parameters in the
hyperbolic region are decreased with respect to the non-rotating case.

Still considering anticyclones, but on the other side of the limiting stable band
of figure 1, one sees on figure 11 for Ro = −1 that the exact compensation of the
Stuart vortex core vorticity by solid body rotation completely annihilates both the
elliptic instability and the previously observed centrifugal one. We also observe the
emergence of a number of discrete bands of instability near the hyperbolic region,
but with small growth rate.
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Figure 11. Same as figure 9(a) but with ρ = 1/3 and Ro = −1.

4.3. Case ρ = 3/4

This case was considered by Potylitsin & Peltier (1999), as weakly elliptic. The values
of vorticity and ellipticity at the core are W0 = −7 and E = 1.155, respectively.

For the non-rotating case, figure 12 shows the characteristic surface of the Floquet
parameter dependence in the (x0,θ)-space. The instability band in the elliptic core is
narrower than for the strongly elliptic vortex at ρ = 1/3. Here again, unstable modes
evolve in a continuous manner when moving to the hyperbolic region, with similar
growth rates as observed on figure 9, the maximal one being obtained at x0 = π−.

When the destabilization of anti-cyclonic vortices is maximal, at Ro = −2 as shown
on figure 13, the unstable band due to the centrifugal modes is quite narrow, and
appears as expected at the location of extremal absolute circulation, in that case quite
close to the core of the vortex. The growth rate of the centrifugal modes becomes
twice as large as the growth rates of the instabilities in the preceding cases. Owing
to the weaker ellipticity than in the ρ = 1/3 case, the elliptically unstable mode
is damped, and confined to a very small core region of spanwise direction. The
hyperbolic instability region is, in this case, close to non-existent.

The same tendencies are observed when decreasing the rotation rate, and at Ro =
−5 the centrifugal instability appears on figure 14 to be pulled away from the centre
region, with a larger extent in x0 than in the previous case. At these values of
the geometrical and kinematic parameters, anti-cyclonic Stuart vortices are seen to
undergo a very strong three-dimensional destabilization mainly from the centrifugal
instability.

At an even smaller value of the rotation rate (Ro = −14), shown on figure 15, the



20 F. S. Godeferd, C. Cambon and S. Leblanc

0.8

0.4

0

0.4

0.8

1.2

1.6

2.8

2.4

2.0

1.2

0.8

0.4

0

r

h

x0

1.2

Figure 12. Same as figure 9(a) but with ρ = 3/4 and Ro = ∞.

centrifugal instability band is both shifted farther away from the centre and widened,
so that it merges with the region in which the hyperbolic instability arises.

4.4. Case ρ = 19/21

This case is close to the point concentration of vorticity, with W0 = −20 and E = 1.05
at the core. The ellipticity is therefore very weak.

Accordingly, the map of the Floquet parameter (shown on figure 16) is slightly
different than in the other two non-rotating cases. Since ellipticity is weak, so is the
influence of the elliptic mode of instability away from the centre: no such unstable
mode is found for values of x0 larger than 1, say. In that case, the hyperbolic
instability zone emerges by itself on the stability diagram, clearly separated from the
other unstable zone, and observed to be confined to a quite small part of the (x0,θ)
parameter space.

4.5. Case ρ = 1

This case is special since it corresponds to an irrotational flow in the rotating frame of
reference: the relative vorticity vanishes everywhere, except on the core of the vortices,
where it is infinite. The relative circulation of each point vortex remains −4π.

Without background rotation, it may be shown that any open or closed streamline
(except the hyperbolic stagnation point) is stable with respect to exponentially grow-
ing short-wavelength perturbations (see Appendix B). Algebraic growth may occur.
Neither elliptic nor centrifugal instability occurs. The only exponential instability is
concentrated on the hyperbolic stagnation point, which is unstable.
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Figure 13. Same as figure 9(a) but for the anticyclonic case Ro = −2 with ρ = 3/4.

Under rotation, this latter hyperbolic instability persists, and centrifugal instability
is expected. Indeed, for a pure circular potential vortex (W (r) = 0 and U(r) ∼ r−1),
the sufficient condition for instability Φ(r) < 0 with Φ(r) given by (2.2) is easily
shown to be fulfilled somewhere for any rotation rate. For flows with non-circular
streamlines, such as the Stuart vortices, the Sipp–Jacquin criterion (equation (5.2)) is
thus expected to hold.

4.6. Open trajectories

The evolution of the amplification parameter in the (θ,y0)-space is plotted for the
non-rotating case on figure 17 and on figure 18 for the anticyclonic case Ro = −5. We
observe that on following the open trajectories remnants of the hyperbolic instability
appear, with an amplification that quickly vanishes with increasing y0, especially in
the strong anticyclonic case of figure 18. However with respect to the non-rotating
case, the maximal amplification value of about 0.35 is the same, obtained for the
spanwise θ = 0 mode.

5. Synthesis of the instability criteria
In the following, we summarize the instability results, aiming at providing precise –

and, we hope, as definitive as possible – answers to the problem of linear stability of
two-dimensional vortex flows in a rotating frame.
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Figure 14. Same as figure 9(a) but for the anticyclonic case Ro = −5, with ρ = 3/4.

5.1. Results on the three background instabilities

The geometrical optics method allowed us to apply zonal RDT equations along
individual streamlines for short-wavelength disturbances. Some simple mechanisms
identified in simplified extensional flow given by (3.3) and (3.5), in a rotating frame,
were retrieved in more complex flows, such as the Taylor–Green and the Stuart
vortices. Local analysis is invaluable for substituting the informative taxonomy of
unstable modes, hyperbolic, elliptic, centrifugal, to the zoological one, braid, core, edge,
initially used by Peltier and coworkers (see e.g. Smyth & Peltier 1994).

As shown in figures 10, 12, 13, 14 and 16 the elliptic mode is captured as an oblique
mode whose angular location θ and amplification rate σ is found for individual
streamlines near the core, in a way consistent with previous RDT and stability
analyses for extensional flows (Cambon 1982; Bayly 1986; Cambon et al. 1994).
The relevance of equations (2.3) and (2.4) is confirmed for predicting the shift in
the angular location θ of the most amplified mode, and the modification of its
amplification rate by system rotation. In particular, the elliptic mode, which is located
at θ ∼ π/3 with no rotation, is shifted towards a spanwise mode θ ∼ 0 and is more
amplified in the anticyclonic case, in agreement with a maximum amplification for
Ro = −2 (figure 19). These results are also consistent with the ones of Sipp and
coworkers for the rectangular Taylor–Green vortices with small aspect ratio, and to
the results of Le Dizès (2000) for vortices in a weak external rotating strain field.
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Figure 15. Same as figure 9(a) but for the anticyclonic case Ro = −14, with ρ = 3/4.

The identification of the centrifugal mode in the anticyclonic cases (Ro < 0) is also
clear and accurate using the local analysis along intermediate streamlines between
the core and the periphery. This mode is confirmed to be essentially spanwise (θ = 0),
and inwardly bounded by the streamline where the absolute circulation reaches a
maximum. This characteristic streamline moves towards the periphery of the Stuart
vortices as the anticyclonic system rotation gets smaller and smaller, so that the
centrifugal and the hyperbolic modes can eventually merge.

It is confirmed that the unstable hyperbolic mode is essentially spanwise (θ = 0),
located near peripheral streamlines, and cancelled by a large enough rotation rate.
Recall that on the hyperbolic stagnation point itself, it may be shown that when
it is rotational (which is the case when ρ 6= 1), its stability property is asymmetric
with respect to the rotation rate (see figure 4), i.e. anticyclonic rotations are more
destabilizing than cyclonic ones. The corresponding growth rate may be expressed
explicitly (see details in Leblanc 1997).

The most important result illustrated by figures 10, 13 and 14 is the competition
between centrifugal and elliptic instabilities in the anticyclonic case. For values of
the Rossby number around Ro = −2, where both instability modes are important,
the elliptic instability is shown to be dominant for the lowest value of ρ. Of course,
centrifugal instability is dominant for the cases with weaker core ellipticity. Finally,
the centrifugal instability explains the asymmetry of the effect of system rotation
and destabilization of anticyclonic vortices for quasi-circular vortices, whereas this
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Figure 16. Same as figure 9(a) but with ρ = 19/21 and Ro = ∞.

explanation is provided by the elliptic instability if the core of the vortex is elliptic
enough. A quantitative study of the domain (ρ, ψ,Ro) in which the influence of the
centrifugal instability is relevant, was recently proposed by Sipp & Jacquin (2000),
but in connection with local criteria for spanwise modes of disturbances only (see
§ 5.2 below).

Finally, note that any streamline (except the hyperbolic point) at zero absolute
vorticity W (x0)+2Ω = 0 may be shown to be stable to short-wavelength perturbations
(see Appendix B). This extends the now classical result of ‘gyroscopic stabilization’ of
the elliptical instability in a rotating frame (Craik 1989; Cambon et al. 1994; Bayly
et al. 1996; Leblanc 1997).

5.2. Validity of criteria obtained with pure spanwise perturbations

Although the basic elliptical instability involves oblique modes at θ ∼ π/3 – so that
spanwise modes (θ = 0) are stable without rotation – in the rotating case, maximum
amplification is found at Ro = −2, again for a spanwise mode. Hence, the special case
of spanwise modes which are naturally unaffected by pressure disturbances requires
particular attention. Short-wave dynamics is simplified for these modes since the
kikj/k

2 factors disappear from the last equation of (3.18). Leblanc & Cambon (1997)
proposed generalizing the inertial discriminant, which reduces to (2.6) in the case of
an extensional flow, using the form

ΦLC = 2(Ω +U/R)(W + 2Ω)− (∂sU)2 (5.1)

where ΦLC is the determinant of the inertial matrix in curvilinear coordinates (s, ψ),
with s the curvilinear abscissa, R the local curvature radius, U = ds/dt the velocity
amplitude, and W = −∇2ψ the modulus of vorticity at the given streamline. In the



Instabilities in Stuart vortices 25

0.5

0

1.0

2.0
1.5

0.5

0

r

h
y0

1.5

0.5

1.0

Figure 17. Distribution of the amplification parameter σ with respect to the y0-coordinate at
x = 0 for the open trajectories, at Ro = ∞.

particular case of centrifugal instabilities, Sipp & Jacquin (2000) showed that the
right criterion is

ΦSJ = 2(Ω +U/R)(W + 2Ω) (5.2)

instead, generalizing the result of Bayly (1988), so that Φ < 0 on a whole trajectory
is a sufficient condition for having a centrifugal instability. Introducing the intrinsic
shear rate (or shear vorticity) Sh defined from W = −2Sh + 2U/R (note that,
in the limiting case of a parallel flow, the shear obtained from this definition is
half that of the commonly used shear parameter), equation (5.2) becomes ΦSJ =
(W + 2Ω + 2Sh)(W + 2Ω), or, equivalently ΦSJ = −(Sh)

2 + (W + 2Ω +Sh)
2. The

criterion (5.1) differs from (5.2) through the diagonal contribution ∂sU to the strain
rate in the inertial tensor. Note that in the general case in which the matrix of
the linear system of equations is time-dependent over a streamline, stability is not
necessarily determined by the determinant of this matrix. In the analysis of Sipp &
Jacquin, the pressureless system (3.18) is projected onto a special basis, so that its
matrix becomes triangular and its determinant does characterize the stability; this
matrix differs from the inertial tensor from the term ∂sU.

A significant difference can be found when comparing the local Rossby numbers
which give the maximum destabilization for elliptic and centrifugal instability. When
the elliptic instability is involved, the maximum destabilization is found near the
Rossby number Ro = −2, and a significant range of Rossby numbers around Ro =
−1, the case of zero absolute vorticity, yields stability. This is consistent with results
obtained from the analysis at vanishing ellipticity, which predicts stability for −2/3 >
Ro > −2, and instability with amplification rate (2.4) outside this domain. In the
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Figure 18. Same as figure 17 but for the anticyclonic case Ro = −5.

elliptic case, the choice of the vorticity at the core for defining the Rossby number is
convenient, without need of an alternative. The situation is rather different when the
centrifugal instability is involved, since it may appear on an intermediate range of
streamlines, not necessarily close to the core, so that the local vorticity may change
and get smaller in absolute value from the core vorticity. Results of figures 10, 13 and
14 show that the centrifugal instability takes place for streamlines nearly outward
from the streamline where the absolute circulation has a maximum. It is easy to
show that this limiting streamline corresponds to a change of sign of the absolute
vorticity (Appendix A), in agreement with the generalization of Kloosterziel’s criterion
(Kloosterziel & van Heijst 1991) to non-circular streamlines, and with the analysis of
Sipp & Jacquin (1998). Accordingly, the centrifugal instability occurs over an annulus
of streamlines, whose local Rossby number Roψ is in the range 0 > Roψ > −1. Hence
the domain of maximum amplification of elliptic instability by system rotation, and
the domain of activation of centrifugal instability by rotation as well, involve different
ranges of Rossby numbers, assuming these are defined locally.

6. Conclusion
In this work, we have shown that the ‘local method’ can predict the three fun-

damental instabilities, of hyperbolic (H), elliptical (E) and centrifugal (C) types, the
features of which are closely related to those of canonical flows of reference.

The hyperbolic instability appears to be weakly sensitive to the cyclonic–anticyclonic
asymmetry, and to be inhibited by rotation, at a high enough rate. Surprisingly, this
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Figure 19. Boundaries of the unstable zones in the plane (Roψ ,θ), for ρ = 3/4 and Ro = −14 (solid
line) and Ro = −5 (dashes). The heavy solid line indicates the analytical prediction obtained from
equation (2.3) for the elliptical instability. The centrifugal instability bands are bounded on the left
by the Roψ = −1 value.

instability does not seem to have been found by Sipp in a flow consisting of Taylor–
Green vortices at Ω = 0 (Sipp & Jacquin 1998; Sipp et al. 1999).

For the characterization of the elliptical instability by the local method, Sipp &
Jacquin (1998) used general disturbance orientations θ only in the Ω = 0 case, again
for the Taylor–Green cell flow. They restricted the more general Ω 6= 0 analysis to the
particular orientation θ = 0. In the present study, we show that this method is able to
lock onto the angular peak of elliptic instability, and follow its shifting by rotation.

Very close to the core (x0 = 0), the values of θpeak and σmax in our results fit very well
the theoretical predictions of equations (2.3) and (4.1), as shown in figure 19. Maximal
amplification is shown at Ro = −2, with σmax ' S = 1/2 and θpeak ' 0 (figures 10,
13), whereas θpeak ' π/3, σmax ' 9S/16 is recovered without rotation (figures 9a, 12,
16). Different tendencies occur outside the core when looking at figures 12, 14, 15, 16:
clearly, an elliptical instability branch emanates from the core. Without rotation (see
e.g. figure 16), the fact that θpeak decreases outward from the core may be partially
explained by an increasing ellipticity (see the semi-analytical result on curve (b) of
figure 1 in the paper by Bayly 1986). On the other hand, the decrease with W (Ψ ) of
the local Rossby number in absolute value would lead to decreasing θpeak according
to the anticyclonic branch −∞ > Ro > −2 of equation (2.3). As shown on figure 19,
equation (2.3) remains relevant in correctly predicting the dependence of θ upon Ro
close to the outer boundary of the elliptic branch rather than its crest. In terms of
local anticyclonic Rossby numbers, the elliptical branches of figures 14 and 15 are in
the intervals [−5,−2] and [−14,−2] respectively. In the cyclonic case (figure 20), the
location of the elliptical instability branch at the core x0 = 0 agrees with the value
computed from equation (2.3).

For the centrifugal instability, our study confirms its triggering in the non-circular
case, and provides the inner limiting bound of its domain of existence as being
the trajectory at which maximal absolute circulation is attained. This condition also
amounts to zeroing the absolute vorticity. For the case of rotating Taylor–Green
vortices studied by means of a normal-mode analysis, Sipp & Jacquin (2000) agree
with this criterion. On the other hand, the numerical simulations by Potylitsin &
Peltier 1999 are performed at too low values of k3, preventing one to distinguish one
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Figure 20. Same as figure 9(a) but with ρ = 3/4 in the cyclonic case Ro = 5.

kind of instability from another, and as a consequence to make sure that their ‘edge’
modes are actual centrifugal ones, in the absence of additional theoretical evidence.
The simulations of Kelvin–Helmholtz vortices by these same authors (Potylitsin &
Peltier 1998) exhibit a more convincing centrifugal instability character, from the
‘torus’-like shape of the observed modes.

In order to explain the preferential destabilization of anticyclones with respect
to cyclones, only the elliptical and centrifugal instabilities remain good candidates
among the initial three ones. From equation (2.4), one identifies two branches of
elliptical instability. One yields strong amplification for anticyclones in the interval
Ro ∈] −∞,−2[, this main branch being clearly observed on figures 14 and 15, with
maximum amplification around Ro = −2 for transverse modes. The second branch
for Ro ∈]−2/3, 0[ also extends for Ro > 0 to destabilize cyclonic vortices, with smaller
amplification rates of oblique modes. This latter branch may eventually collide the
(C) instability domain.

The main branch of (E) and the (C) instabilities take place in non-overlapping
intervals of the local Rossby number Roψ = W (ψ)/(2Ω), as in the sketch in figure 21,
partly suggested by Sipp (private communication). Let us begin by considering a given
trajectory ψ = constant along which the vorticity is W (ψ), and by letting the frame
vorticity 2Ω vary. Bearing in mind that W < 0 and R < 0, we see on figure 21 that
the centrifugal instability domain lies on the right of the always stable limit of zero
absolute vorticity, i.e. 2Ω = −W or equivalently Roψ = −1. The elliptical instability
main branch domain lies systematically on the left of this Roψ = −1 limit, from which
it is separated by an always stable region. Built on grounds of pressureless modes
(θ = 0), criteria such as ΦSJ , Φ and ΦLC suggest 2Sh and 2S as respective width
scales for the (C) and (E) zones in our picture. Figure 23 quantitatively supports this
argument, with the additional careful note that the (E) domain is no longer centred
around Roψ = −2 on this plot, when the (E) band approaches the periphery of the
vortex. The largest amplification seems to keep the Roψ = −2 value though.
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Figure 21. Sketch of the (E) and (C) instabilities
(partly suggested by Sipp, personal communication).

Focusing on the many criteria for pressureless modes, the following statements can
be made:

(i) The criterion Φ = −S2 + (2Ω + W0/2)2 (equation (2.6)) suggests the (E) part
of our scheme, but is restricted to the canonical ‘extensional’ flow, and additionally
is probably restricted to a neighbourhood of stagnation points. The limits of the (E)
band are at the Φ = 0 locations, with negative Φ in between.

(ii) The criterion ΦSJ = −S2
h + (W + 2Ω + Sh)

2 (equation (5.2)) departs from
the latter by −(∂U/∂s)2, where S2 = S2

h + (∂U/∂s)2 (Appendix A). ΦSJ is valid for
the centrifugal instability, but not with certainty for the other kinds of instability. It
however is useful for the (C) part of our diagram, since ΦSJ = 0 on the limits of the
(C) band, and is negative in between.

Although ΦSJ exhibits extrema at a value of Roψ which is expressed identically as
Ro = −1−Sh/(2Ω) in terms of Sh, one has to be aware that Sh itself is expressed
differently in each case. Consequently, the centrifugal instability region given in Roψ-
space is very different from that of the (E) and (H) ones, even in the pure parallel
shear case.† Within the unstable centrifugal instability zone, 0 > Roψ > −1, Sh < 0
and the absolute vorticity is cyclonic. For the other instabilities, Roψ < −1 in their
sphere of action, and the absolute vorticity is anticyclonic (Sh > 0).

An ever-present difference between centrifugal destabilization and the others comes
from the presence of the curvature term in Sh = −W/2 + U/R. In the other
instabilities, the vorticity term is leading so that Sh > 0 with W < 0, whereas U/R
is dominant in the unstable centrifugal zone, with Sh < 0 and U/R < 0 (see the sign
map of Sh for ρ = 3/4 on figure 22). Therefore, destabilization of anticyclones comes
from either the centrifugal instability for Roψ ' −0.5, or the elliptical instability for
Roψ ' −2.

The question remains open however as to whether an actual flow such as the mixing
layer can be interpreted in as simple terms. Indeed, the outcome of the competition
between the remaining two candidate instabilities depends in a dramatic way upon
the ellipticity. This translates into the value of ρ for the Stuart vortices as shown on
figure 23: at small ρ (E) defeats (C), and vice versa at large ρ.

Let us now conclude our work with a discussion about possible extensions and
limits of the geometric optics stability theory. First, it is worth mentioning that short-
wavelength linear instabilities may be extended to the nonlinear regime in a relatively
straightforward way when the amplitude of the WKB disturbance (3.10) scales with ε
(Lifschitz 1991). In that case, it may be shown that the evolution of the corresponding

† Normal-mode analysis for ρ = 0 with rotation produces maximal destabilization at
W/(2Ω) = −(∂U1/∂x2)/(2Ω) ' −2.5, fully in agreement with the Φ criterion (Yanase et al. 1993).
See also figure 4 in Leblanc & Cambon (1997).
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Figure 22. Map in the (x1, x2)-plane of the negative zones of Sh (shaded area) and of its domain of
positiveness (white areas). Streamlines of the Stuart vortex flow are shown for the same parameter,
ρ = 3/4. It is clear that, along streamlines around the elliptical or hyperbolic stagnation points, Sh

changes sign, whereas in the intermediate region where centrifugal instability may occur, its sign is
constant and negative.

weakly nonlinear disturbance is governed by the same system of ODEs as in the linear
case, i.e. (3.18). Following the terminology of nonlinear geometric optics, this means
that vorticity waves are linearly degenerate, a well known fact in compressible flows
(see for instance Majda 1984). As proved by Lifschitz (1991), and provided the wave
vector is bounded, linear instability is equivalent to the nonlinear growth of the
vorticity disturbance.

Furthermore, two of the advantages of the local method are its small cost in
numerical resources, and the fact that it can help suggest semi-analytical criteria. It
seems that the fundamental underlying assumptions associated with it do not prevent
it from comparing well with normal-mode analyses, where the latter are available
(Leblanc & Cambon 1998; Sipp & Jacquin 1998; Sipp et al. 1999; Sipp & Jacquin
2000), of course at sufficiently high k3.

Although the link between geometric optics theory and normal-mode methods
(associated respectively with the continuous and the discrete parts of the spectrum)
remains to be clarified in the general case, interesting progress has been made in
this direction. At first, Bayly’s construction of centrifugal modes (Bayly 1988) gives a
correction to the WKB growth rate which is in remarkable agreement with normal-
mode computations (see Sipp et al. 1999; Le Duc & Leblanc 1999). More recently,
Le Dizès (2000) gave the correction to the WKB growth rate in the case of a Rankine
vortex in a multipolar strain field, including the elliptical instability in a rotating
frame which is of interest here. Briefly, this correction requires knowledge of the
dispersion relation for the linear problem, which is indeed the case for the Rankine
vortex. For more complex flows, such as Stuart vortices, the dispersion relation
cannot be obtained in explicit form, and a similar construction of normal modes is
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a function of the local Rossby number Roψ . , ρ = 1/3, and core Rossby number Ro = −2;
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ρ = 3/4, Ro = −14. The centrifugally unstable band lies on the right of Roψ = −1, and the elliptical
instability band is on the left of this value, from which it is separated by a stable zone.

therefore impossible to achieve. However, Le Dizes proposed a heuristic scheme for
computing the growth rate of normal modes with moderate wavenumbers k3, from
results obtained with geometric optics. Although this correction agrees fairly well
with normal-mode calculations, it cannot be computed without knowledge of one
particular value of the normal-mode growth rate. However, this requires picking a
result from an eigenmode computation (a rather difficult problem for flows like Stuart
vortices, see e.g. Pierrehumbert & Widnall 1982; Leblanc & Cambon 1998; Potylitsin
& Peltier 1999).

Of course, geometric optics also has limits, as we would like now to illustrate.
The analysis proposed by Lifschitz & Hameiri (1991), and homogeneous RDT, can
in principle account for algebraic growth, since they essentially provide solutions to
initial value problems. However, Floquet analysis is restricted to exponential growth –
of the disturbance field amplitude a. This analysis is correct if and only if the evolution
of the disturbance wavevector is periodic, amounting to the strict condition k ·U = 0,
but for those particular flows where dT/dψ = 0 (as shown in Appendices A and B).
The more general case k ·U 6= 0 can hardly be overlooked on the mere argument of
viscous cut-off (Sipp & Jacquin 1998), but should be dealt with in future works, as
an extension of the present study.

More specifically, the problem of non-uniform convergence of the general case
toward the specialized cases characterized by k · U = 0 or dT/dψ = 0 deserves
special attention. If k · U 6= 0 and dT/dψ 6= 0, the disturbance wavevector k tends
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asymptotically, i.e. after a large number of periods, to be aligned with the direction
of ∇ψ, and with an increasing modulus. In that case, the analysis of the Kelvin–
Townsend equations should be extended over a larger integrating time. In the limit
dT/dψ → 0, e.g. in a neighbourhood of the elliptical point, the theory might have to
be adapted for including higher-order terms in the ε-development of equation (3.10).

The authors would like to thank Dr Denis Sipp for providing a skeleton of the code
used in numerical computations, and for discussions about the theory. S. L. is grateful
to Pierre Seppecher for fruitful discussions on differential geometry. C. C. wishes to
acknowledge support from the Isaac Newton Institute, Cambridge, UK, during the
1999 Turbulence Programme.

Appendix A. Intrinsic shear rate, curvature, and other aspects of streamline
geometry

Curvilinear coordinates are the curvilinear abscissa s and the streamfunction ψ. An
elementary displacement dM is defined either by Cartesian coordinates (dx1, dx2) in
the fixed frame of reference or by (ds,dψ) in the Serret–Frenet frame, which is rotated
at an angle, α say, from the fixed frame. Accordingly,

ds = cos(α)dx1 + sin(α)dx2, (A 1)

dψ = −U sin(α)dx1 +U cos(α)dx2, (A 2)

from the expression of velocity in terms of the streamfunction: Ui = εij3∂ψ/∂xj . The
velocity modulus is of course U = (U2

1 +U2
2 )1/2. The above differential relationships

(A 1) and (A 2) also yield (ds)2 = (dx1)
2 + (dx2)

2, and ds = Udt at constant ψ. The
angle α itself comes from

dα =
ds

R + βdψ. (A 3)

R is the local curvature radius and the coefficient β remains to be computed (see
further derivation). The radius R is also defined by (see e.g. Sipp & Jacquin 2000)

U3

R =
∂ψ

∂xi
Uj

∂Ui

∂xj
or ψ,iUjUi,j . (A 4)

The intrinsic shear rate is

Sh =
U

R −W/2 (A 5)

with W = U2,1 −U1,2.
From equations (A 2) and (A 4), one finds

Sh = 1
2

cos(2α)(U2,1 +U1,2)− 1
2

sin(2α)(U1,1 −U2,2) (A 6)

which means that Sh is the extra-diagonal term of the symmetrized gradient matrix
in the Serret–Frenet axes. Let us define the angle α′ as that of the principal axes of
this symmetrized matrix with respect to the fixed frame. Equation (A 6) can then be
rewritten as

Sh = S sin 2(α− α′), (A 7)

in which S is the local strain rate. The symmetrized gradient matrix eigenvalues are
±S explicitly in the frame of its principal axes, which is also the reference frame
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generated by its eigenvectors. This important result shows that Sh is bounded, at
least with the crude relation |Sh| 6 S .

It is also possible to express all the components of the gradient matrix Ui,j using the
curvilinear coordinates and equations (A 1), (A 2) and (A 3). Finding the divergence
and the rotation is particularly interesting. The divergence is found to be

U1,1 +U2,2 =
∂U

∂s
+U2 ∂α

∂ψ
= 0 (A 8)

from which the coefficient β in (A 3) is readily identified as β = −(∂U/∂s)/U2.
Similarly, the vorticity is

W =
U

R −
1

2

∂(U2)

∂ψ
(A 9)

and finally the intrinsic shear rate given by (A 5) is

Sh =
1

2

U

R +
1

4

∂(U2)

∂ψ
. (A 10)

The local strain rate S may then be rewritten as

S2 =S2
h +

(
∂U

∂s

)2

. (A 11)

Integrals over closed trajectories are also of some interest, using the property∫∫
f(x1, x2) dx1dx2 =

∫ ψ1

ψ0

(∫ L(ψ)

0

f(s, ψ)
ds

U

)
dψ

for surface integrals over the area delineated by a given trajectory ψ = ψ1 of length
L(ψ1). For instance, using Stokes’ theorem for expressing Γ ,∫ L(ψ)

0

1

U
W (ψ) ds = W (ψ)

∫ T (ψ)

0

dt = W (ψ)T (ψ), (A 12)

in which T (ψ) is the period for evolving along the closed trajectory. The extremum
of the absolute circulation is found from equation (A 12) to be

dΓa
dψ

= [W (ψ) + 2Ω]T (ψ) (A 13)

showing the coincidence of dΓa/dψ = 0 and W + 2Ω = 0.
By using the Stokes theorem for expressing T (ψ) and (A 9)–(A 10), one finds

dT

dψ
=

∫ T

0

1

U2

(
W +

∂U2

∂ψ

)
dt =

∫ T

0

2Sh

U2
dt. (A 14)

Appendix B. Additional results for the eikonal and vorticity equations
B.1. Evolution of the wavevector

We first show that the wavevector k solution of the eikonal equation cannot grow
faster than algebraically (outside the hyperbolic stagnation point where exponential
growth is possible). For this, we compute the evolution of k ·U and k · ∇ψ along the
trajectories (streamlines in the present case) of the basic flow with steady (Eulerian)
velocity field U (x). This will be sufficient since U and ∇ψ are orthogonal, and thus
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may be used to form an orthogonal basis (the Serret–Frenet frame, see Appendix A),
after normalization by |U |. Thus, the wavevector may be written as

k =
k ·U
|U |2 U +

k · ∇ψ
|U |2 ∇ψ + k3n, (B 1)

where n is the unit vector normal to the plane of the flow.
We first obtain

d

dt
(k ·U ) =

dk

dt
·U +

dU

dt
· k = −(LTk) ·U + (LU ) · k = 0, (B 2)

where d/dt is the Lagrangian derivative – also denoted with an overdot – and L = ∇U
with components λij . This gives k · U = c(ψ) (constant along the basic streamline,
assumed positive), so that from (B 1)

k =
c(ψ)

|U |2U +
k · ∇ψ
|U |2 ∇ψ. (B 3)

Now, by taking into account that d∇ψ/dt = −LT∇ψ, it is easy to show that

d

dt
(k · ∇ψ) = −2(S∇ψ) · k, (B 4)

where S = 1
2
(L + LT ) is the symmetric velocity gradient tensor. Introducing the

intrinsic shear Sh (see Appendix A) satisfying (Sipp & Jacquin 2000)

Sh =
1

|U |2 (S∇ψ) ·U , (B 5)

and taking into account the following relations:

d

dt
|U |2 =

d

dt
|∇ψ|2 = 2(SU ) ·U = −2(S∇ψ) · ∇ψ, (B 6)

equation (B 4) may be written as, using (B 3):

d

dt

(
k · ∇ψ
|U |2

)
= −2c(ψ)

Sh

|U |2 . (B 7)

We can then show that the left-hand side of (B 7) may be bounded along any
streamline. Indeed, −Sm(ψ) 6 Sh 6 Sm(ψ), where Sm(ψ) is the maximum eigenvalue
of S along any streamline ψ (see Appendix A). Furthermore, we assume that |U |2 does
not vanish along the streamline (stagnation points and separatrix are excluded from
the analysis), and is finite, whereby |Sh|/|U |2 may be bounded along each streamline
by an appropriate positive constant c′(ψ), such that −c′(ψ) 6 Sh/|U |2 6 c′(ψ). As a
consequence, integrating equation (B 7) gives

|k · ∇ψ|
|U |2 6 2c(ψ)c′(ψ)t+ c0, (B 8)

using an initial constant c0. Since |U |2 is assumed to be finite, |k · ∇ψ| cannot grow
faster than algebraically along a regular streamline ψ.

Integrating (B 7) along a closed trajectory from instant t = 0 to T and using
equation (A 14), one obtains(

k · ∇ψ
U

)
t=T

−
(
k · ∇ψ

U

)
t=0

= −
(
k · U

U

)
t=0

∫ T

0

2Sh

U2
dt = −

(
k · U

U

)
t=0

dT

dψ
.

(B 9)
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Therefore one sees that, for k to be periodic, one needs either −(k · U/U)t=0 = 0
(whence our choice of initial conditions), or dT/dψ = 0. The latter condition is exact
for an extensional flow, and holds on stagnation points of elliptic or hyperbolic kind
in general two-dimensional steady flows.

B.2. Streamlines at zero absolute vorticity: W (ψ) + 2Ω = 0

We now proceed to show that any streamline ψ at zero absolute vorticity, i.e. such
that W (ψ)+2Ω = 0, is exponentially stable to short-wavelength instabilities. For this,
following Lifschitz (1994), we introduce the vorticity amplitude vector defined by

b = k × a , a = −k × b|k|2 , (B 10)

with b · k = 0. Since a · k = 0 as well, it is easy to see that |b| = |k| |a|, so that if |k|
is bounded in time, the behaviours of |b| and |a| are similar. In a rotating frame, the
vorticity amplitude is governed by

db

dt
= Lb− k · (W + 2Ω)

k × b
|k|2 . (B 11)

At zero absolute vorticity, equation (B 11) simply yields db/dt = Lb. Since the basic
flow is two-dimensional, it is sufficient to study the evolution of the planar projection
of b, or equivalently b ·U and b · ∇ψ as previously for the wavevector. Using similar
arguments, it may be shown that

d

dt
(b · ∇ψ) = 0, (B 12)

and
d

dt
(b ·U ) = 2(S∇ψ) · b, (B 13)

and that b · ∇ψ is constant along a regular streamline ψ, whereas |b ·U | cannot grow
faster than algebraically.

For a closed streamline, the results (B 4), (B 7), (B 12) and (B 13) can be directly
inferred from the shape of matrix F (X , 0, T ) (equation (3.16) ) which can be expressed
as  1 γ 0

0 1 0
0 0 1


in the Serret–Frenet frame, where α = dT/dψ (except in a neighbourhood of the
hyperbolic stagnation points). The result from the eikonal equation comes from
k = (F−1)TK (in equation (3.16)), with

(F−1)T =

 1 0 0
−γ 1 0
0 0 1

 ,

and another of the above-mentioned results arises from the vorticity equation written
as the Cauchy solution

ω(x, t) = F (X , 0, T )ω(X , 0)

again with ω = ∇× u at zero absolute vorticity.
We conclude that both |b| and |a| cannot grow faster than algebraically along any

streamline at zero absolute vorticity (corresponding to an irrotational trajectory in
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the fixed frame of reference). This extends the well-known result for the stabilization
of the elliptical instability at zero absolute vorticity (Cambon et al. 1994; Leblanc
1997).

Finally, it is worth noting that this also shows that any steady planar irrotational
flow in a non-rotating frame (W = 0 and Ω = 0) is at most unstable to algebraically
growing disturbances; exponential growth is only possible on the hyperbolic stagna-
tion point. For Stuart vortices, this corresponds to the case ρ = 1. When Ω 6= 0, this
conclusion is no longer valid.
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